H=-4.9t^2+19.6+0.4

Simple and best practice solution for H=-4.9t^2+19.6+0.4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-4.9t^2+19.6+0.4 equation:



=-4.9H^2+19.6+0.4
We move all terms to the left:
-(-4.9H^2+19.6+0.4)=0
We get rid of parentheses
4.9H^2-19.6-0.4=0
We add all the numbers together, and all the variables
4.9H^2-20=0
a = 4.9; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·4.9·(-20)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{2}}{2*4.9}=\frac{0-14\sqrt{2}}{9.8} =-\frac{14\sqrt{2}}{9.8} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{2}}{2*4.9}=\frac{0+14\sqrt{2}}{9.8} =\frac{14\sqrt{2}}{9.8} $

See similar equations:

| 9x-1+64=180 | | 2c+16=48 | | 234=45h | | -10+k=4+8k | | 5r+8+47=90 | | F(t)=-16t^2+384 | | 5a-(3a-8)=4(4+3a) | | 3x-14=3-41x | | F(7)=g(-8) | | 4+1-2p-8=3-4p | | 4(8v-5)+3=-113 | | -k+4+10k=67 | | K-2=-5k+4K+6= | | -4u+2(u-4)=-4 | | -5+x÷9=3 | | (2x-11)+57=180 | | 4(2x+4)+19=10x+12-2x+23 | | 4x-5x+3=-5+4x-3 | | 200m-100m+57900=60900-200m | | (B+6)+3b=90 | | 5r+8+90+47=180 | | 9c-11=7 | | .4x+8.2=36.2 | | a-4+2=6 | | 2x-9+2x-9=7x-3 | | 3x^2+30x+75=3x2+30x+75 | | 5+3b+4=-3 | | 2x+10+6x+13=87 | | 7.50+1.50x=15 | | 3z+9=-16 | | (5x+5)=61 | | 3(4-8x)+52=8x |

Equations solver categories